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MORE ON A CLASS OF OPTIMAL SEARCH PROBLEMS

Warren W Willman

Operations Research Branch
Mathematics and Information Sciences Division

Abstract: Optimal strategies are investigated for a class of one-dimensional search processes in
which the objective is to find a point which is near, but not beyond, a boundary of unuertain location.
Problems of this type are encountered -n the analysis of mining operations. Upper and lower bounds
for the optimal expected payoff are derived, and the optimal search strategies are described
explicitly for a large sub:lass of these processes. Rf.sults are obtained by formulating the search as
a multistage decision process and using a dynamic programming approach.

INTRODUCTION

Optimal policies are investigated here for a class of one-dimensional adaptive search processes in
which the objective is to find a point which is near, but not beyond, a boundary of uncertain location.
This class is an extension of a class of similar search processes examined previously by the author (I).
aside from theoretical considerations, this extension is important because of its applications to certain
mining operations. These problems share some features of those studied by Derman and Ignall (2), but
are basically different because the main question here is where to search, not when to stop. They are
also basically different from the classical search problem described in Koopman (3), where the objective
is to locate a small object, at least approximately, within a large planar region of uncertainty. The only
applications of the results of this report to planar searches would be to the location of the boundary of
a arge planar region, where the uncertainty of the boundary location is small compared to the size of
the region. The results here are obtained by formulating the search as a multistage decision process and
using a dynamic prZgramming approach.

A SEARCH PROBLEM

The search process considered here proceeds sequentially. At epoch i (i = 0, 1 .... ) a searcher has
the choice of terminating the search or selecting the median mi of a random variable yi whose distribu-
tion is rectangular with width T > 0. The term mi represents the desired search point, whereas yg is the
actual search location, which is unknown to the searcher. The random variables (YJ -imn) are statisti-
cally independent, but each has the same distribution width T.

If the search is terminated at epoch N > 0, the searcher receives a return J such that

= 0 , if N = 0

G(yN) - N, if N > 0

NRL Problem BOI-10; Project RR0O3.02.41-6152. This is a final report on one phase of the problem. Work on other
phases of this problem i-. continuing. Manuscript submitted August 18, 1972.
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where

S+ kx, if x - b

, if x >b.

Also, k > u, a > 2 + (1/3k), and b is a random variablu with a symmetric trapezoidal probabili;y den-
sity of the class shown in Fig. I such that the lower and upper midpoints are 0 and so, respectively,

*. T I -*- T-0
S-(<h -Q)

1L

Q h
(lower midpoint) (tpper midpoint)

Fig. I - A classof symmetric trapezoidal probability densitiesb. The quantity T> 0 is thedistribution
width of the random variables y.

where so > T and T < 1/3k. Also, b is statistically independent of the y's. The quantity G represents
the gain from the search. The cost of a single search step has been taken as unity, without loss of
generality. The random variable b represents a random boundary location. A rectangular density foi
b on the interval [O,sol would serve equally well here, but that would entail more complicated formulde
in the following analysis.

At decision time i, the searcher knows the values of so, T, k, a, i, and, for a*2 I << i, the search
decisions mi and the corresponding values of sgn(b -yj). This last sequence of values represents a
knowledg- of the side of the boundary b on which the previous actual search locations were. The
problem investigated in this report is that of finding search policies which maximize the (prior) expected
value of the return J. As usual, a policy, or strategy, is defined as a decision rule which determines the
searcher's action as a function of the information available to him, for any possible realization of !he
search process, and for whic', the search terminates with a probability equal to 1. This search is adapt-
ive in the sense that the seurcher's actions depend 'n previous search results.

The search problem treated here is a modifikation of one studied in a previous work by the
present authoT (1); it differs in only two details. In the previous work a = 0, and the value of the
return J is

L:
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sup GOyj)
i< N

if N > 0. The present modifications make the search process a more accurate approximation to certain
kinds of searches actually conducted in mining operations. Because of its similarity, however, much of
the analysis of the previous problem can be carried over to this one. The results are also of a similar
sort and will be compared with those obtained for the other search problem at the end of this report.

ANOTHER FORMULATION

It is convenient at this point to define the following four sequences of random variables:

hi = minso0}U,{m:y/ > b, I < i}

£, = maxto}U{m/:y y< b, <

I I
Zi = L+ sgn(b-yi); i = 0,1. ... _ = 0:

where

sgn(0) A 1.

It is immediately apparent that there is always a better alternative than choosing mi outside the interval
[Q - T, hi+ Tj. Search policies for which such a choice is possible will not be considered further. In
addition, we temporarily admit only policies for which mr is always in the interval [£i+(113k),
hi-(113k)J if hi-Ri > 4/k.

It can be shown by induction that it is possible to express the return as

N-I

J = [a(z,,-z,-,) + k(yizj-XKI -zj)z,..) -

i=O

where N is the epoch at which termination occurs. This alternative expression for the return makes the
search process amenable to a dynamic programming analysis. The boundary location b, and the quan-
tities ), and ziI serve as the state variables at epoch i in this analysis; the intended search points mi
are the control variables and the search "resSults" zi are noisy measurements of the state. The b compo-
nent of the state is static; the ziI component is known exactly.

STATE ESTIMATION

The temporary policy restriction ensures that the points 0, so, and the m's are all separated by a
distance of at least T as long as hi - £i > 4/k. By using this fact and the statistical independence of
the random variables (yi-mi), the ,sual inductive use of the Bayes Rule shows that the posterior
probability density of b at epocs i (given the data available to the searcher at that time) is also a
symmetric trapezoidal density of the class previously shown in Fig. 1, whenever this condition is
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satisfied. The upper and lower midpoints of this conditional density are hi and 91, respectively. The
conditional ,'ensity of Xi, given b and the data at epoch i, is also determined by the posterior distribu-
tion of b uný.,r these circumstances, namely by the parameter Ri. Since the state variable z1_1 is known
exactly fro.,i the data at epoch i, it follows that hi, QR, and z-..l are sufficient statistics for the joint
conditional distribution of the state variables for the portion of the search where hi - Rg ;, 4/k. It is
important to note that these estimation results depend on the fact that, for any i > i > 0, the relation
hi - 2i > 4/k - hi - Q/ > 4/k, which is an immediate consequence of the definitions of hi and 2i.

THE VALUE FUNCTION

Let It be the class of search policies which satisfy the temporary rtstriction imposed previously
and for which the functional dependence of the action at epoch i on the available data is determined
uniquely by the statistics hi, 2i, and z1_! for all i such that hi - R1 > 4/k. Since the joint conditional
distribution of the state variables is also determined by these statistics in this case, and since the values
of (yi-mij) are statistically independent, the following definition is unambiguous for such a policy.

Definition: For h - (4/k) > £ > 0, z = 0 or I, and ire'l, the quantity L (i,k,h,z,7) is defined
as the conditional expected future return at epoch i from policy ir given that Qi = Q, hi = h, and
z1_1 = z, where the future return at epoch i is the total return minus the return that would result from
terminating the search at that epoch.

For irell, the notation n(i,2,h,z) is used to denote the action specified by ir at epoch i for
2i = 2, hi = h, and ziI = z. The value function is now defined as:

Definition:

Q(i,2,h) = sup L(i,Q,h,l,ir)

R ,2, h) = sup L(i, 2, h,0,i}for h-(4/k) • >2 O; i = 0,1,....

The value function is defined in terms of the two partial functions Q and R for conceptual convenience.
Intuitively, Q is the optimal expected future return if the last search point was below the boundary,
and R is the optimal expected future return if it was above the boundary.

The results of Stratonovich (4) imply that the conditional expected future return for an optimal
policy at a given epoch of any realization is determined by the conditionrl probability distribution of
the state under those conditions. Therefore, this value function is the supremum of the conditional
expected future returns for all search policies satisfying the restriction imposed in an earlier section
titled "Another Formulation" (for the domain of definition of this function), in particular, it is the
optimal value function in the sense of Bellman (5) if optimal policies exist within this restricted set
of policies. Furthermore, it will be shown later that no optimal policies are excluded by this restriction,
so this value function has these pioperties with respect to the class of all admissible search policies.

The situation is more complicated if hi - Qi < 4/k because the statistics hi, Qt, and zi-I are in
general no longer sufficient to determine the conditional probability distribution of the state variables.
This case will be treated separately.

kq
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THE BELLMAN EQUATION

For irell and h - (4/k) > 2 > 0, the additive expression for J and the statistical independence of
the (Yi-m)'s imply the recursion

rf(i,R,h,z,m,iT), if ir(i,2,h,z) = "search at m"
L(iQ,h,Z,ff)=

h0 if r.(i,Q,h,z) = "terminate seaich"

where

fQ,Q,h,z,m,ir) A - {L(i+ 1,Qi+t,h,+t,zi,,r) + a(zi-zi-l) + k(Yizi-Xi(l -zi) zijl) - 1}
h,=h
ZI- 1 ýZ

Repeating the manipulations performed in Ref. 1, it follows from the Principle of Optimaiity developed
by Bellman (5) that the value fuiction satisfies the equations (together constituting the Bellman
equation)

Q(i,2,h) =max • hr-
) maxsup / -m [k(m-Q) + Q(i+ l,m,h)]

fQ+(1l3k)-4m~h-(l/3k) It -

+m-[R(i+ l,-,m)-2a -k1

h-2n
kT 2

12(h-Q) !

R i ,h sup I h-m [k(mr-Q) + Q(i+ l,m,h)]

-- ~Q+ ( /3k)4m h-(l/3k)th-

+ M [R (i+ 1, m,. .) - a - k9 I

+a k-12(h-2) 1

for h-(41k) .? Q > 0. The reason that R cannot be zero is that searching at m = 113k, then at
m = -1/3k (guaranteeing that zi+1 = 1), is olways preferable to terminating the search at epoch i if
zi-) = 0 because a > 2 + (113k). From these two equatiops, it follows that

Q(i,i,h) =t maxrn,R(i,o,h)-2a-ka (1)

in this range of R and h.

AL
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ADDITIONAL PROPERTIES OF THE OPTIMAL VALUE FUNCTION

The next step here is to establish some additional properties of the partial value function Q which
will be useful in the analysis of this search problem. These properties are proved in this section as a
series of lemmata. In the context of this entire section, Q is the partial value function as defined in an
earlier section titled "The Value Function", and not any other solution to the Bellman equation, if such
exist.

LEMMA I. h - Q = 4/k - Q(i, 2,h) = 0.

Proof. For any admissible policy and any realization of the random variables of the search process,
the future return at any epoch i, such that zi-I = I and hi - ki > 4/k, is bounded above by the future
return from this policy in the search process analyzed in Ref. I with the same values of so, T, k, and i,
because the future return is the same if ZN = 1 and exceeds the future return of the present process by
a if zv = 0. Since every policy which is admissible here is also admissible in this other search process,
and since the optimal expected future return is zero in the other process if hi - 9i = 4/k, the lemma is
verified.

LEMMA 2. 2(i, Q,h) is monotonic in (h-Q).

Proof. Suppose that h-2 >I 41k is increased by a factor c > I for some value of i. If the prob-
lem is changed so that the value of T is also increased by this factor, the remainder of the search process
at epoch i for the corresponding realization is merely scalad up by the same factor. Thus, for any
policy nell in the original problem giving conditional expected future returii M at this point, the scaled-up
policy (such that cm/ always replaces in1 ) is admissible in the scaled-up problem and gives a return
greater than M for each realization, and hence a greater conditional expected future return at the cor-
responding point. Therefore,

Q (i,R, h) < QI Q~,c0, ch)

where Q, is tm.e corresponding partial value function for the scaled-tip search problem. Finally, rince an
increase of T is a degradation of search data, it can never increase the supremum of a conditional ex-
pected future return, so that

QI(i,ck,ch) -, Q(i,c£,ch).

Definition: s* = infls: 3 i,h,2 . s = h - Q and Q(i,Q,h) > O1

LEMMA 3. Q(i,Q,2+s*) - 0.

Proof. If s* = 4/k, this is true by Lemma 1; if not, s* > 4/k. In this case, assu!ae that Q(i,Q,R+s*)
=g > 0. Let m* e[£+(lI3k),2+s*-(I13k)] be such that

k ___ kT 2 g
k (Q+s*-m*)(m*-Q) +-- [R(i+l,2,m*)-a-kI] k _ I >s* S*12s* -2"

Such an m* exists by virtue of the Bellman equation and Lemma 1. It also follows from Lemma 1 that
for any e such that 0 < e < s* - 4/k,
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-+S* -? E'\ k(,n*-2 +)\ kT 2

\ *- C ) \ s*-2e / [R (i+ lQm *)- a-k21 12(s* -E) -!

<< Q(i,Q,2+s*'-e) = 0.

From the definition of mn*, however, this is impossible for sufficiently small e because all of the terms
in the large parenthesis are continuous functions of e.

LEMMA 4. Q(i, 2,2 +s) depenls only on s.

P:'oof. Lemmata 1 to 3 imply that Q satisfies the following modified Bellman equation:

,,)s ls S- Uku 2(skT2  1 s-u

Q(i,,l)= 1/3k<u<sup k) s 11 " (s) T Q(i+l,R+u,Q +s)

+ .(s) l Q(i+ 1,Q ,+U)

where

0, for s <s~
I, for s > s*

and where u = m - 2. Since Q(i,2,R) 0 by Lemma 1, Q(i,R,Q+s) must depend only on s to avoid a
contradiction.

A SIMPLIFICATION

By Lemma 4, the following definition is unambiguous:

Definition:

fQ(i,R,2+s), for s > 41k
V(s) ~-10s, for 0 < s < 41k.

Also, by the proof of Lemma 4, V satisfies the equation and boundary condition given by

V (s) sup (s) - ' ku - 12(T -u 11 + (s) L- U V (s- U)+-(s) ! "
i /3k ,u'<s-41 /3k) I(2 12(s-u) I J )1J

and

V(0) = 0

where
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0, for s s*

1, for s>s*.

LEMMA 5. There exists a unique solution V to Eq. 2.

Proof By an extension of Theorem I in Chapter IV of Bellman's book (5), there exists one and
only one solution V to this equation such that V(O) = 0 and V(s) is conatinuous at s = 0. Since all solu-
tions clearly have these two properties, the lemma follows.

The problem of finding the partial value function Q has now been simplified to finding s* and
finding a solution to Eq. 2. The following result is helpful in determining s*:

LEMMA6. s*=supIs>O:R(OO,s)<aI.

Proof By Lemma 4 and Eq. 1,

Q(i, R,h) = Q(O, O,s) = maxl 0,R(0,0,h-Q) - al.

Therefore,

Q(i,2,h)>O*R(O,0,s)-a>O and s=h-2.

By definition,

s*=inf13>O:3i,Q,h as=h-2 and Q(i,Q,h)>01.

Hence,

s* = infis> O:3i,2,h 9s=h-2 aid R(O,O,s)>al

= inf Is > O:R(O,0,s) >aj

= supis>O:R(O,O,s)<al,

since termination is nonoptimal, Q(i, R,h) is r "onotonic in (h-2), and R = Q when Q > 0.

OPTIMAL POLICIES

The simplified Bellman Eq. 2 is exactly the same as the one derived for the search process studied
in Ref. 1, except that the parameter s* here replzces Smin there. The results there, and the fact that
Q = R for Q > 0, imply the following results for 7real (this policy restriction is shown to be superfluous
in the next section):

a. If zi-I = I at epoch i, it is optimal to continue the search if and only if sl > s*.

b. It is always optimal to continue the search at epoch i if z-I = 0.

c. If se[2n-ls*,2ns*],n=0,l,2,...,
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then

V-(s)=:ks+ 6s 2n - n < V(s) n-j -""+ 102 - -)l2 A V=(s)

where

-A Log2e + log2e 2 T2
kVk 6

d. V+(s) - V-(s) < V+(s*) for s > s*12.

e. V+(2n'?) = V-(2ns-) = V(2ns") for n = 0, 1, 2,....

f. The policy v-,where mi=(hi/2) + (Q£/2), is optimal if so = 2n ", n = 1, 2, ... and hk - i> s*.

g. Cases exist where hi - 21 > s* and mi = (h,/2) + (1/2) are not optimal.

Furthermore, if T = 0 the conditional probability density of b given the search results is retangular for
any policy in 11, so the Bellman equation can be extended to entire search process. It is then straight-
forward, but tedious, to show by direct substitution in the Bellman equation that the policy

"0 , if 0 < sl < Ilk

Si
u 2= 2 if 1Ik<si<31k

2-sg- Ilk, if 3/k < si < (3 + 6VN

is optimal for si < s* and, by Lemma 6, that s* = (3 + V56)/k in this case. If T > 0 it is possible that
admissible policies lead to posterior probability distributions for b which are not symmetric trapezoidal;
so s* and optimal policies for s < s* cannot be found in this way. Since an increase of T from zero to
a positive value represents a degradation of information, however, the quantity (3 +../6)/k is a lower
bound for s* in this case. An upper bound can be established by evaluating the expected return trom
the admissible but nonoptimal policy

-T 9 if -T <hi 21 <l/k

u i I "-_ T , if Ilk<hi -Q<31k

2 1
3• s T - - T , if 3/k < hi -Q < 6/k .

It is not important to evaluate this return exactly; it is positive if

s, - + -k T.
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Hence, the results about s* obtained here can be summarized as

--- < s* < + kT.
k~ k 6

REMOVAL OF POLICY RESTRICTION

The analysis in this report has heretofore been based on a restriction of admissible search policies
to those for which mi c [Qi+ 1/3k, hi- 1/3k] always. It is the purpose of the present section to show
that this restriction, although convenient for analytical reasons, is superfluous with regard to optimal
policies. In particular, it is shown that for any policy not satisfying this restriction there is a policy that
does, and one which gives an expe:, -d return at least as great. Consequently, the restilts pertaining to
optimal search policies in this report can be regarded as applying to all search policies without restriction.

i

LEMMA 7. If si > 4/k and T < 1/3k for any epoch i, it is not optimdl to choose mi such that mi
4 1 Q,+(1/3k), hi-(1/3k)l.

Proof Assuming the contrary, the Principle of Optimality (5) implies the existence of a case
where so > 4/k, T < 1/3k, a policy, and a realization of the search process such that m/ < R/+ 1/3k, or
mi > h1- 1/3k, for some epoch j, and such that this policy's conditional expec*ed future return at that
point is greater thar that of any policy which terminates then or for which k, + i'3k < m < hi - 1/3k.
Let the variable triple (so, Tk) be fixed such that this possibility exists and let q bethe set of all such
triples with this property. Define.the set B as

B=lx>41k: (x,Tk)e Al.

Let o be an element of B such that o < infB+ 1/3k, and let If denote ad admissible policy for which the
possibility described above exists for the triple (a, T,k), the existence of which is guaranteed by the
construction of o. Consider the corresponding search process and realization and denote by i the first
epoch for which mij < Qj+ 1/3k or mi > hi- 1/3I4. For convenience, denote hi-Ri by si and rni-ki
by ui. All probabilities and expectatio:as in the following computations are meant to be conditioned on
the data available to the searcher at epoch i.

Since 2/+ T < 2,+ 1/3k < mi < hil- 1/3k < hi-T for all i < i, the conditional density 'of b at
epoch i is symmetric trapezoidal with upper and lower midpoints at hi and ii. By construction,
s, > 4/k > 12T.

Case I: mi < 2i + 1/3k. In this case, the searcher's conditional expected future return is not
decreased by giving him free knowledge at epoch i+ I of the random variable (l/2)-(l/2)sgn(b-at+ý),
where c, =max(1/3k,ui + 1/3k) and " is a random variable independent of b and they's with rectangular den-
sity of median zero and width T, and allowipg him to proceed optimally with this extra knowledge. At
this point (epoch i+1) the conditional density of b is symmetric trapezoidal by construction with'mhid-
points less than inf(B) apart. Hence, the optimal expected future return is given by the Be'llman equa-
tion for policies in '1. Some tedious computations similar to those in Ref. I then show- that the condi-
tional expected future return from policy I1 at epoch i in this case is less'than or equal to

a - 1 + k(a+7) + Q(i,2j+t,hi)

i f z i _ 1  = 0 , a n-Q

-1 + k(c+T) +Q(i,2i+x,hi)
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if z1_I = I. Since Q(i,Q,h) is monotonic in h-2 and is greater than or equal to R(i,Q,h), either of
these possibilities implies that

O<-l+k(a+T-Qg) < kT- 1/3,

contradicting the original assumption.

Case 2: mi > hi- 1/3k. The proof in this case is similar, except that the "free" extra information
given to the searcher at epoch i+I is the random variable (1/2)- (1/2) sgn(b-3+ ), where P--min
(hi - 113k, hi, - u1 - I13k).

DISCUSSION

'As was mentioned in the section titled "Another Formulation," the search problem investigated in
this report is similar to the one described in Ref. I. The main differences in the results here are the
inclusion of a new state variable zi 1. in the formulation of the search as an optimal control problem, a
new stopping rule, the searching strategy for si < s*, and the difficulty in finding the value of s* (which
corresponds to smin in the previous problem) for TO 0. Ifs 0 > s*, the optimal expected return in this
search process is a+ V(so), where V is defined by Eq. 2. Although this function is slightly different
from the function called V in Ref. 1, it has many similar properties (see section titled "Optimal Policies")
and obeys the same equation, except that s* * Smin. It is for this reason that the certainty-equivalent
policy 7- is optimal for sj = 2ny'in this search process, as well as in the one investigated in Ref. 1.
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